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A new phasing algorithm has been used to determine the phases of diffuse

elastic X-ray scattering from a non-periodic array of gold balls of 50 nm

diameter. Two-dimensional real-space images, showing the charge-density

distribution of the balls, have been reconstructed at 50 nm resolution from

transmission diffraction patterns recorded at 550 eV energy. The reconstructed

image ®ts well with a scanning-electron-microscope (SEM) image of the same

sample. The algorithm, which uses only the density modi®cation portion of the

SIR2002 program, is compared with the results obtained via the Gerchberg±

Saxton±Fienup HiO algorithm. The new algorithm requires no knowledge of the

object's boundary and proceeds from low to high resolution. In this way, the

relationship between density modi®cation in crystallography and the HiO

algorithm used in signal and image processing is elucidated.

1. Introduction

The phase problem for non-periodic objects (Stark, 1987) has

been studied by many different approaches, some of which

have recently demonstrated striking success with experimental

data:

(a) the Gerchberg±Saxton±Fienup HiO algorithm (Fienup,

1982, 1987); see also De Caro et al. (2002), who refer to it by

using the concept of con®ned structure; this method is closely

related to that used for the ®rst successful experimental

reconstruction of a non-periodic object from X-ray scattering

by Miao et al. (1999);

(b) techniques based on analyticity and complex zeros (Liao

et al., 1997);

(c) the study of projections onto convex sets (Bautschke et

al., 2002);

(d) the transport of intensity equations (Paganin & Nugent,

1998);

(e) direct methods, for real and positive objects (Spence et

al., 2003).

Experimental implementation of the popular HiO algor-

ithm in transmission geometry is complicated by loss of low

spatial frequencies at the beam-stop. To overcome this

problem, in the past the HiO oversampling method has been

used in combination with an independent low-resolution

image of the object (i.e. from SEM, X-ray zone plate or optical

image) to provide the low spatial frequencies. More recently,

the development of the Shrinkwrap (Marchesini et al., 2003)

and other variants of the HiO algorithm have successfully

treated the missing data as adjustable parameters. Experi-

mentally, the preparation of the isolated object needed for

HiO can be dif®cult; only recently has the ®rst atomic reso-

lution image of a carbon nanotube been reconstructed by HiO

from a coherent transmission electron diffraction pattern

using nanotubes that span holes in a carbon grid (Zuo et al.,

2003).

In a recent paper (He et al., 2003), images of randomly

placed two-dimensional arrays of gold balls were recon-

structed from their soft X-ray transmission diffraction patterns

by means of the HiO algorithm. This algorithm is closely

related to the electron-density modi®cation procedure of

X-ray crystallography, and is able to: (i) exploit prior knowl-

edge of the geometrical form of a support, outside of which

the electron density is known to be zero (the support is

de®ned as the region in which the object density is known to

be non-zero: it corresponds roughly to the boundary of the

object); (ii) treat, via suitable constraints, the real and

imaginary parts of the object wavefunction (Miao et al., 1999).

A necessary tool for success was the use of either a mask based

on supplementary images provided by SEM techniques or a

subjective estimate of the object boundary taken from the

autocorrelation function. In the Shrinkwrap method (Mar-

chesini et al., 2003), a ®rst estimate of the object support is

obtained from the autocorrelation function of the object
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(which is known to be twice as large as the object in any given

direction) and this estimate is updated iteratively. If the

structure consists of one isolated ball and two clusters (as in

the case treated here), the autocorrelation function includes a

faithful image of every cluster convoluted with the single ball

and this may be used as a trial support function. The method is

then similar to the heavy-atom method of X-ray crystal-

lography or Fourier transform holography.

In a companion paper (Spence et al., 2003), direct methods

(DM) have been applied to a simulated diffraction pattern

calculated from a structure of 28 gold balls. In that work, the

phasing process was realized by the following steps. The

simulated pattern was divided by the Fourier transform f(h) of

a single ball, so obtaining a simulated normalized pattern

(SNP). The structure factors, in turn, were also normalized,

according to

Eh �
PN
j�1

fj�h� exp�2�ih � rj�
. PN

j�1

fj�h�2
" #1=2

; �1�

where N is the total number of balls. Then a modi®ed version

of the SIR2002 program was used to determine the positions

of the balls from the SNP [Burla et al. (2003); SIR2002 is a

package originally dedicated to the crystal structure solution

of small and large molecules]. The procedure consisted of a

tangent procedure starting from random phases, followed by:

(a) the EDM (electron-density modi®cation) step, where

new phase sets {'} were estimated by iteratively applying

electron-density-modi®cation procedures, i.e. �! f'g ! �
cycles;

(b) the HAFR (heavy-atom reduced real-space Fourier

re®nement) step, consisting of �! f'g ! � cycles, in which

balls were associated with electron-density peaks;

(c) least-squares cycles alternating with (2Fobs ÿ Fcalc) map

calculations to re®ne and complete the structural model.

Such an approach requires prior knowledge of the scat-

tering factors of the balls and of their number N. However, it

does not need prior knowledge of the geometry of the support.

When applied to the experimental speckle pattern considered

in this paper, such an algorithm did not succeed, probably

owing to unavoidable errors in the measurements and in the

model scattering function (the gold balls do not have exactly

the same radius).

This negative result has stimulated the search for a more

general phasing procedure, described in this paper, based on

the following general conditions:

(a) no prior knowledge of the scattering factor of the gold

balls or of their number;

(b) no use of any support, such as masks based on the

autocorrelation function or SEM images.

The algorithm described in this paper is restricted to real

densities, such as a charge density illuminated by X-rays well

away from any absorption edge or the electrostatic potential

for electron diffraction in the absence of inelastic scattering.

Signi®cant spatial variation in X-ray absorption or multiple-

scattering effects and inelastic scattering in electron or X-ray

diffraction lead to a `complex object', which cannot be treated

by the methods of this paper. However, a spatially indepen-

dent mean attenuation is acceptable. Without these inelastic

effects, we may then assume that Friedel's law holds but we

note that this assumption may hinder the precise reconstruc-

tion of the structure if they are actually present.

2. Experimental

An experimental soft X-ray transmission diffraction pattern

from two clusters of gold balls of 50� 5 nm diameter,

deposited on a silicon nitride window, was recorded at the

Advanced Light Source at the Lawrence Berkeley Laboratory,

using soft X-rays with a wavelength of 2.1 nm (He et al., 2003).

The experiments used the `pink' 588 eV (2.11 nm) photon

beam at beamline 9.0.1. Features of the beamline include: a

0.5 mm thick, 750 mm square Be window to separate the UHV

beamline from the low-vacuum sample environment; a

monochromator consisting of an off-axis segment of a zone

plate and the diffraction experiment itself (Fig. 1). Samples

were made by placing a droplet of solution containing `gold

conjugate' colloidal gold balls on a silicon nitride window

(thickness 100 nm) and allowing it to dry. The gold balls

formed several single-layered (two-dimensional) clusters on

the SiN membrane, as shown by ®eld-emission scanning-

electron-microscope images.

The X-ray coherence length lc must be greater than the

maximum path difference between any pair of interfering rays,

i.e. lc > w�max, where w is the width of the sample and �max is

the maximum diffraction angle. For our geometry and wave-

length, �max = 0.12 rad and the resolution limit is 8.4 nm. For

the 5 mm aperture (effectively the monochromator exit slit)

shown in Fig. 1, the resolving power is about 500, the coher-

ence length is then 1 mm and the maximum sample illumina-

tion area 8 � 8 mm. Similarly, the (spatial) coherence patch

provided by the 5 mm aperture is 10 � 10 mm. Allowing for an

empty (but still coherently illuminated) band around the

sample, its allowed size is thus <4 � 4 mm. Temporal and

spatial coherence requirements for this coherent diffractive

imaging are discussed in more detail by Spence & Howells

(2004)

The periodic boundary conditions that are imposed by

sampling are now considered. We ®rst consider a one-

dimensional case for simplicity. Shannon's theorem (see, for
Figure 1
Set-up of the diffraction experiment.



example, Papoulis, 1962) gives the optimum sampling interval

�x of a real-space band-limited function (which we take to be

real), which will allow its reconstruction at all intermediate

abscissa values. Shannon shows that this is possible if �x =

1=(2uo), where uo is the band limit, i.e. the cut-off spatial

frequency in the complex diffraction pattern. The theorem is

shown in textbooks also to apply with the domains reversed, in

which case a compact support of width L in real space will play

the role of a `band limit'. However, the quantity detected in

our experiments is the diffracted intensity, not the diffracted

complex amplitude. The Fourier pair for this diffracted

intensity is the autocorrelation of the object and we may now

apply Shannon's band-limit sampling theorem to this Fourier

pair. The autocorrelation function has width 2L and this now

plays the role of a `band limit' (but in real space); hence, by the

theorem, the optimum sampling (not oversampling) of the

diffracted intensity is 1/(2L) (half the Bragg angle for a crystal

of period L). This is the sampling interval for the scattering

intensity that extracts all useful information from it, including

phase information. The extraction of this phase information

requires an algorithm capable of solving a set of non-linear

coupled equations, which the Fienup algorithm does. In this

sense, this optimum sampling of the diffraction-plane intensity

minimizes aliasing of the autocorrelation function. This

Shannon interval for frequency-space sampling of the intensity

is 1=(2w) = �=�z, where z is the sample-to-detector distance

and � is the detector-plane increment (a 25 mm CCD pixel in

our case). For our � and z values, this leads to a sampling

interval of 4 mm. Note that this would correspond to a twofold

oversampling in each direction of the diffraction-plane

complex amplitude. The choice of other sampling ratios in two

and three dimensions is discussed in detail elsewhere (see

Miao et al., 1998; see also Sayre, 1952; Bates, 1982).

The semiangle � (see Fig. 1) subtended at the object by

the ®rst detector pixel beside the optic axis de®nes the lowest

spatial frequency 1=D = �=� contributing to the recon-

struction, and we treat this pixel as the ®rst-order Bragg

re¯ection, (1, 0) Miller indices, for a square two-dimensional

unit cell with symmetry P1. The use of SIR2002 imposes

periodic continuation of this cell. For the performed experi-

ments, D = 9.147 mm. For our 1025 � 1025 CCD, the highest-

order re¯ection is (512, 512); the real-space resolution for

pixel (512, 0) at the boundary is D=512 = 17.8 nm, giving about

four pixels per gold ball in the reconstructed image. The width

of the region illuminated by the beam is about B = 5 mm, which

is less than the coherence width of the beam. The diffraction

pattern consists of Airy's disc-like pattern from a single

ball, crossed by ®ner `speckle' fringes due to interference

between different balls. The ®rst zero for a ball rather

than a disc occurs at a semiangle 1.4�=d, which occurs at

the re¯ection with pixel (Miller) indices (256, 0). (The spacing

D1 corresponding to the angle 1.4 � �=d is D1 = d=1.4 =

50=1.4 = 35.7 nm. As we have assumed D = 9.147 mm, the

index is D � 1.4=50 = 256.)

Fig. 2 shows a SEM image of a random set of gold balls of

50 nm diameter at 550 eV. Fig. 3 gives the corresponding

diffraction pattern, showing ®ne speckle fringes modulating

the pattern expected from a sphere. The ®rst minimum of this

pattern occurs at a value of sin �=� = 1.4=d AÊ ÿ1, where d is the

diameter of the ball (the factor 1.4 is replaced by 1.2 for a

disc).

The number of measured re¯ections (Friedel pairs

included) is 992061, for data resolution up to 126 AÊ , about one

quarter of the gold ball diameter; the number of measured

unique re¯ections (Friedel opposite merged) is REFL =

522517; the number of unique re¯ections, not measured

because of the beam stop, is UREFL = 1365.
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Figure 2
SEM image of a random set of gold balls of 50 nm diameter at 550 eV.

Figure 3
Experimental soft X-ray transmission diffraction pattern from the 50 nm
diameter gold balls shown in Fig. 2. The X-ray wavelength is 2.5 nm.



research papers

334 B. Carrozzini et al. � Phasing diffuse scattering Acta Cryst. (2004). A60, 331±338

3. The new phasing procedure

The new procedure uses only the electron-density-modi®ca-

tion subroutine of the SIR2002 software package. In real

space, only a small portion of pixels with the highest values

(about 0.25%) were selected as de®ning the region inside the

support for the current estimate of the density function. In

reciprocal space, the phasing proceeded gradually from low-

order re¯ections outward. The modulus constraint was applied

in each cycle. The initial assignment of phases is random. We

assume that:

(a) the nature and the number of the scatterers are

unknown (consequently, their scattering factors are also

unknown);

(b) anomalous-dispersion effects can be neglected; accord-

ingly, only the set of unique re¯ections will be considered in

the calculations and thus the intensities of the Friedel oppo-

sites are merged.

The above assumptions exclude most of the steps of the

standard SIR2002 procedure, e.g. the normalization of the

structure factors, the tangent process, the HAFR re®nement

cycles and the least-squares process (see x1). Accordingly, the

new SIR2002 procedure consists only of cycles of electron-

density modi®cation �! f'g ! �. The phasing process may

be partitioned into two steps.

STEP 1. Because of their importance (see x4), only low-

resolution re¯ections are used initially in the phasing process.

A resolution threshold TRH is de®ned, equal to 0.25 of the

experimental data resolution: let NREFTRH be the number

of unique re¯ections satisfying the threshold resolution (in our

case, NREFTRH = 52500). The program starts by assigning

random phases to a very limited number of re¯ections: let us

call NBEG this number, which corresponds to 5% of the

NREFTRH re¯ections. Then 60 macrocycles, each constituted

by 9 cycles �! f'g ! � are performed. During each

macrocycle, the number of phased re¯ections used in each

hemicycle f'g ! � starts from NBEG and progressively

increases up to NREFTRH: the selection of the re¯ections

actively used is performed on the basis of the product

|FobsFcalc|. In each hemicycle �! f'g, the number of grid

points of the electron-density map used for calculating phases

is 0.0025 of their total number (we select the grid values with

highest intensity).

At the end of the ®rst macrocycle, the program estimates, in

the hemicycle �! f'g, the intensities and the phases of the

UREFL re¯ections. The intensities, calculated by inversion of

�, are used as observed values in the next cycles �! f'g ! �
(in addition to the NREFTRH re¯ections) and are updated

(together with the calculated phases) at the end of every

macrocycle.

STEP 2. The phasing process is extended to the full set of

experimentally available re¯ections. The phase values

obtained in STEP 1 for the low-resolution re¯ections are used

as pivots in the phasing process: their new values (obtained at

the end of each macrocycle) are always combined (by the

tangent formula) with the values obtained at the end of STEP

1. By contrast, the UREFL re¯ections are recalculated as in

STEP 1.

Figure 4
The average intensity hIi is plotted against the resolution d (in AÊ ).

Figure 5
Rmerge versus the resolution d (in AÊ ).

Figure 7
Value of RES for n = 1 versus d (in AÊ ).

Figure 6
Recovered charge density from non-periodic array of 50 nm diameter
gold balls using the modi®ed SIR2002 program.



These steps de®ne the relationship between the new

proposed algorithm and the classical HiO procedure.

(a) The new algorithm varies, from cycle to cycle, the

number of structure factors used in the calculation of �.

(b) The new algorithm limits the number of grid points in

the electron-density map, whose intensities are used to

compute the phases. This practice is not suggested by the fact

that the balls occupy a small part of the total area. Indeed, a

similar procedure is used by the standard version of SIR2002

for solving ab initio the crystal structure of proteins, and also

of small molecules, which ®ll more densely the unit cell (only

about 2% of the pixels are used for the electron-density

inversion). In the case of oversampling, the percentage may be

further reduced because the unit cell contains a large empty

region.

(c) No information on the geometry of the support is used.

This is an advantage when such information is unknown or

imperfectly de®ned in the experiment.

4. Analysis of the diffraction data and of the results

Two features of the experimental diffraction pattern are

evident. The ®rst one regards the average intensity hIi as a

function of the resolution d (calculated in AÊ ), plotted in Fig. 4.

We see that the intensities of the low-order beams are very

intense in comparison with the high orders. The phasing

process, therefore, is expected to be dominated by the inner

region of the pattern. This is the reason why our phasing

procedure tries ®rst: (a) to phase low-frequency re¯ections,

and then uses them as pivots in a phase-extension process; (b)

to estimate the number UREFL of unobserved low-frequency

intensities. The subsequent estimates of these beam-stop

re¯ections play a crucial role in the success of the procedure:

without their use, the phasing process may fail. A similar

observation was reported by Wu & Spence (2003) that the

intensities of low-resolution fractional re¯ections calculated

using a Hilbert transform formula was found to be important

in performing phase extension.

The second feature that should be evidenced is that I(h, k)

is not perfectly symmetrical: signi®cant deviations from Frie-

del's law were noted. This may be due to the following three

reasons.

(a) Unavoidable parasitic scattering or absorption. For a

well designed experiment, the effects of parasitic scattering or

absorption (border effects, silicon nitride absorption etc.)

should be minimized. The success of our phasing process

indicates that this is the case for our experiment.

(b) Effects of anomalous scattering. If the balls are assumed

to be identical, the scattering amplitudes Fh,k and Fÿh,ÿk

should be equal, however the corresponding phases are not

constrained to reverse sign under index inversion if there is

multiple scattering or if the phase shift along an optical path

through a ball exceeds �/2. At large scattering angles also, all

the intensities detected fall on the Ewald sphere, however

re¯ection from one point on this sphere through the origin

does not result in a new point on the sphere. This failure

condition is discussed elsewhere (Spence et al., 2003). Since

the radii may not all be equal, and since the balls may be

elastically deformed, we may expect that the equality |Fh,k| =

|Fÿh,ÿk| is not strictly obeyed. The deviations, however, are

expected to be small.

(c) Incorrect identi®cation of the (0, 0) pixel in the detector

(zero pixel).

Since the effects of (a) are expected to be small, we can

identify the zero pixel as the one for which the value of
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Figure 8
Recovered charge density from a non-periodic array of 50 nm diameter
gold balls using the HiO algorithm.

Figure 9
Recovered charge density from a non-periodic array of 50 nm diameter
gold balls using the modi®ed SIR2002 program at the end of STEP 1.
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Rmerge �
P

h;k �jF� ÿ Fmedj � jFÿ ÿ Fmedj�P
h;k �F� � Fÿ� �2�

is a minimum, where

Fmed � �F� � Fÿ�=2; �3�
with F+ and Fÿ representing Fh,k and Fÿh,ÿk, respectively.

The application of equation (2) to the experimental pattern

shown in Fig. 3 did not suggest any origin shift. [We report in

Appendix A the results obtained when we applied equation

(2) to the pattern shown in Fig. 10.]

The deviation from Friedel's law decreases at increasing

values of sin �=� (see Fig. 5), where the value of Rmerge is

plotted against the resolution d (AÊ ). Such a trend does not

comply with the expected behaviour of the anomalous-

dispersion effects, which usually increase with sin �=�. This

suggests that the deviations from Friedel's law are mainly due

to unavoided parasitic scattering and to errors in measure-

ments. (At high resolution, the diffraction intensities are

particularly faint.)

We now consider the results of our phasing algorithm. The

image resulting at the end of the phasing procedure (as seen

on the computer screen) is shown in Fig. 6: it is in good

agreement with the experimental SEM image shown in Fig. 2

(apart from a shift of origin).

We now require a quantitative measure of the ef®ciency of

our phasing approach and of the accuracy of the calculated

model. Since we have ignored the scattering factors of the

balls, we cannot use standard crystallographic indicators as a

measure of agreement between experiment and calculations

(i.e. the crystallographic residual between the observed and

scattered intensities). To overcome this problem, we treat the

Fourier coef®cients obtained by Fourier inversion of the ®nal,

suitably modi®ed, electron-density map as the `calculated'

structure factors (Fcalc in the following). The ®nal map

produced by SIR2002 is modi®ed (before the Fourier inver-

sion) as follows:

��x; y� � ��x; y� if ��x; y� > h�i � n�
��x; y� � 0 otherwise.

�
�4�

h�i is the average value of the unmodi®ed electron-density

map, � is its standard deviation. We show in Table 1 the

residual

RES �
P

h;k �jFobs ÿ jFcalcjj�P
h;k Fobs

�5�

for various values of n. The following may be observed.

(a) The value of RES does not signi®cantly change when n

varies from 1 to 7. For any value of n, RES is signi®cantly

larger than the ®gures usually obtained for small-molecule

crystals at the end of the structure re®nement process. Our

previous observations suggest that this is probably due to

experimental errors in the intensities rather than to some

intrinsic lack of convergence of the phasing algorithm.

(b) The electron-density function is well separated into two

domains: the domain where the scattering balls are con®ned

and an empty region;

Table 1
The RES values for various n values (see main text) are shown when the
modi®ed SIR2002 and the HiO algorithms are used.

n SIR2002 HiO

1 23 44
2 23 46
3 23 44
4 23 40
5 24 40
6 25 41
7 27 43

Figure 11
SEM image of a random set of 28 gold balls of 50 nm diameter at 550 eV.

Figure 10
Experimental soft X-ray transmission diffraction pattern from the 50 nm
diameter gold balls shown in Fig. 11. The X-ray wavelength is 2.5 nm.



(c) The re®nement process converged to a satisfactory

model.

We have calculated, for the case n = 1, the value of RES

against resolution (a similar trend is obtained for other values

of n). We observe (see Fig. 7) that RES substantially increases

with sin �=�: this behaviour is partially expected since the

high-angle intensities are weak but some systematic errors

may remain. Luckily, the error is smaller for low-angle

intensities: they drive the phasing process to convergence in

spite of the large residual at high angles.

In Fig. 8, we show the map obtained by application of the

Shrinkwrap HiO algorithm, in which a support is obtained

from the autocorrelation function and then improved during

HiO iterations. The map was calculated by assuming |Fh,k| =

(|Fh,k| + |Fÿh,ÿk|)=2 and, for the phases, we assume 'ÿh,ÿk =

ÿ'h,k, ensuring a real object. The map correctly reveals the

ball positions but shows a high background level. In Table 1,

we show the values of RES for various n, obtained by using the

HiO algorithm. The RES values are much higher than those

obtained from the map provided by SIR2002 because the HiO

re®nement process is unable to eliminate the large number of

false low-intensity peaks.

Finally, it is useful to verify the ef®ciency of our algorithm

when the data resolution is low. We therefore stopped the

phasing procedure at the end of STEP 1, when we had phased

NREFTRH = 51193 observed re¯ections and UREFL = 1365

beam-stop re¯ections. The data resolution was limited to

500 AÊ , comparable with the diameter of the balls. The SIR2002

algorithm again succeeded and produced the map shown in

Fig. 9. We note that:

(a) the structural model is essentially correct;

(b) the RES value is equal to 20, smaller than the value

obtained at the end of STEP 2.

This last result is of particular interest: it shows that over-

sampling in reciprocal space provides such a high amount of

information that the phase problem may be solved even in

those cases in which the data resolution is insuf®cient for

crystal structure solution.

This conclusion raises a further question: what degree of

oversampling is optimal for solution of the phase problem?

This issue has been discussed in detail elsewhere (Miao et al.,

1998).

In the absence of noise, Shannon's theorem indicates that

the Nyquist rate allows reconstruction of the diffraction

pattern at any angle (between samples) if the samples are

independent. In the presence of noise, however, a higher

degree of oversampling: (a) produces a high correlation

between the intensities of neighbouring pixels and thus the

total amount of information does not increases linearly with

the amount of oversampling; (b) requires small detector pixels,

variable working distance and/or large supports, but these

conditions are not always easily satis®ed: the ®rst demands a

high-quality detector and the second high spatial coherence in

the incident beam; (c) generates a very large number of

re¯ections (particularly for the three-dimensional case), not

easily manageable using current computer programs.

5. Conclusions

A new phasing algorithm, based on the density-modi®cation

portion of the SIR2002 direct-methods crystallographic

program, has been applied to soft X-ray scattering from a non-

periodic object. The algorithm successfully reconstructs

phases from diffuse (continuous) measured scattering ampli-

tudes. As a result, images of a cluster of 50 nm diameter gold

balls have been reconstructed. The results provide an inter-

esting comparison with the HiO Fienup±Gerchberg±Saxton

algorithm, which operates on closely related principles. By

contrast, however, no knowledge of the object boundary is

assumed and the SIR2002 phasing proceeds as a steadily

increasing function of spatial frequency.

APPENDIX A

We have calculated Rmerge as a function of the index shift for

the pattern shown in Fig. 10. This is obtained from a distri-

bution of gold balls such as that shown in Fig. 11. The function

Rmerge is shown in Fig. 12. The minimum value of Rmerge occurs

by subtracting 3 from h and adding 2 to k. After the origin

shift, the average discrepancy between Friedel amplitudes

decreases from 8.99% (obtained for unshifted data) to 6.33%.

The shift for which the minimum is obtained is clearly de®ned.
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